ENVIRONMENTAL PRODUCT DECLARATION

GENERAL INFORMATION

The Life Cycle Assessment (LCA) was prepared in conformity with ISO 14025, ISO 14040, ISO 14044, PCR Part A: Life Cycle Assessment Calculation Rules and Report Requirements (UL 10010, Version 4.0) and Sub-category PCR: Part B: Asphalt Shingles, Built-up Asphalt Membrane Roofing and Modified Bituminous Membrane Roofing (UL 100010-11, 2024). This EPD is intended for business-to-business (B-to-B) audiences.

Holcim Building Envelope

26 Century Boulevard, Suite 205 Nashville, Tennessee 37214

Beech Grove Plant

3525 S. Arlington Avenue Beech Grove, Indiana 46203

Program Operator

ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 610-832-9500 www.astm.org

February 21, 2025 Valid for 5 years

LCA/EPD Developer

Climate Earth, Inc. 137 Park Place, Suite 204 Pt Richmond, CA 94801 415-391-2725 www.climateearth.com

UL's PCR Part A: LCA Calculation Rules and Report Requirements (UL 10010, Version 4.0): serves as the core PCR. Product Category Rules for Asphalt Shingles, Build-Up Asphalt Membrane, and Modified Bituminous Asphalt Membrane Roofing (UL 100010-11, 2024) serves as the sub-category PCR

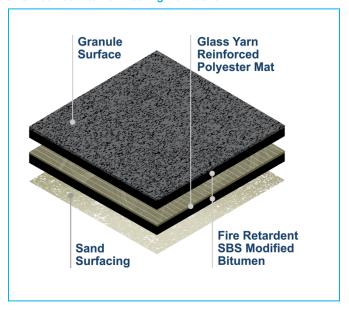
- Sub-category PCR review was conducted by
 Thomas P. Gloria, PhD. (t.gloria@industrial-ecology.com) Industrial Ecology Consultants
- Independent verification of the declaration, according to ISO 21930:2017 and ISO 14025:2006.: □ internal ☑ external
- Third party verifier Thomas P. Gloria, PhD. (t.gloria@industrial-ecology.com) Industrial Ecology Consultants
- For additional explanatory material Manufacturer Representative: Sherrie MacWilliams (sherrie.macwilliams@holcim.com)
 This LCA EPD was prepared by: Leila Schein LCA and EPD Project Manager Climate Earth (www.climateearth.com)
- EPDs are comparable only if they comply with ISO 21930 (2017), use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

PRODUCER

Holcim Solutions and Products US LLC delivers high-performance solutions that make the entire building envelope more sustainable for customers around the world. We are committed to raising the standards of building solutions by delivering superior quality and innovation while addressing industry needs.

Our offerings cover a comprehensive range of residential and commercial roofing, wall and lining systems, insulation, and waterproofing solutions for a variety of industries from construction to marine and aerospace. Our powerful portfolio of brands includes Elevate, Duro-Last, Malarkey Roofing Products, GenFlex, Gaco, and Enverge. Holcim Solutions and Products US LLC is a division of the Holcim Group. Visit HolcimBE.com to learn more.

Holcim's Beech Grove, IN facility is ISO 9000 certified and manufactures Elevate APP and SBS modified bitumen roofing membrane for use in commercial roofing systems. The facility is 225,000 square feet and opened in 1990.


PRODUCT: SBS MODIFIED BITUMEN ROOFING MEMBRANE - TORCH APPLIED

With superior durability, flexibility and UV resistance, SBS modified bitumen roofing membrane is a versatile roofing solution that withstands the test of time. SBS modified bitumen roof membrane can have a granulated or smooth surface and is designed to be installed with heat by torching. It consists of styrene-butadiene-styrene modified bitumen, and strengthened with a reinforced polyester or fiberglass mat which results in a flexible, durable and puncture resistant membrane. The addition of SBS rubber optimizes the natural waterproofing characteristics of asphalt and increases system performance. This proprietary compound provides resistance to thermal and physical forces over a wide range of temperatures. It is ideal for both new construction and re-roofing applications. Additionally, UltraWhite SBS modified bitumen roofing membrane can contribute to LEED® certification.

This study consists of SBS modified bitumen cap sheet and base sheet.

FIGURE 1

SBS Modified Bitumen Roofing Membrane

The products covered in this EPD meet the following physical properties:

TABLE 1

Typical Properties (Meets or exceeds ASTM D 4637, Type I)

Properties	Test Method	Performance Minimum	Typical Performance			
Product Thickness	D 5147	130 mil (3.3 mm)	160 mil (4.06 mm)			
Net Mass	D 146	90 lb/100 ft2 (4,394 g/m2)	102 lb/100 ft2 (4,980 g/m2)			
Bottom Side Coating	D 5147	40 mil (1.0 mm)	43 mil (1.1 mm)			
Peak Load at 0 °F (-18 °C)	D 5147	100 lbf/in, MD (18 kN/m, MD) 100 lbf/in, XMD (18 kN/m, XMD)	105 lbf/in, MD (18 kN/m, MD) 105 lbf/in, XMD (18 kN/m, XMD)			
Elongation at Peak Load at 0 °F (-18 °C)	D 5147	20%, MD 20%, XMD	30%, MD 30%, XMD			
Peak Load at 73 °F (23 °C)	D 5147	70 lbf/in, MD (12 kN/m, MD) 70 lbf/in, XMD (12 kN/m, XMD)	75 lbf/in, MD (13 kN/m, MD) 75 lbf/in, XMD (13 kN/m, XMD)			
Elongation at Peak Load at 73 °F (23 °C)	D 5147	50%, MD 50%, XMD	55%, MD 55%, XMD			
Ultimate Elongation at 5% of Peak Load 73 ° F (23 °C)	D 5147	60%, MD 60%, XMD	65%, MD 65%, XMD			
Tear Strength at 73 °F (23 °C)	D 5147, D 4073	70 lbf, MD (311 N, MD) 70 lbf, XMD (311 N, XMD)	75 lbf, MD (334 N, MD) 75 lbf, XMD (334 N, MD)			
Low Temperature Flexibility	D 5147	0 °F (-18 °C)	-15 °F (-26 °C)			
Dimensional Stability	D 5147, D 1204	1% Change, MD 1% Change, XMD	0.2% Change, MD 0.2% Change, XMD			
Granule Loss	D 4977	2g	0.5g			

TABLE 2 **Product Components**

MATERIAL	% WEIGHTED AVERAGE COMPOSITION
Asphalt	30-35%
Surfacing	20-50%
Mineral Filler/Fire Retardant	20-25%
Polymer	3-5%
Polyester Mat	1-5%

LIFE CYCLE ASSESSMENT

DECLARED UNIT

The declared unit is 1 m² of single-ply roofing membrane for a stated product thickness.

SYSTEM BOUNDARY

This EPD is a cradle-to-grave covering A1-C4 stages of the life cycle.

TABLE 3

Life Cycle Product Stages

	PRODUCTION STAGE (MANDATORY)		CONSTRUCTION STAGE		USE STAGE						END-OF-LIFE STAGE			
Extrac tion and upstre am produ ction	Trans port to factor y	Manuf acturi ng	Trans port to site	Install ation	Use	Mainte nance	Repair	Repla cemen t	Refur bishm ent	De-co nstruc tion / Demol ition	Trans port to waste proce ssing or dispo sal	Waste proce ssing	Dispo sal of waste	
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	C1	C2	C3	C4	
X	Χ	Χ	X	Χ	MND	MND	MND	MND	MND	Χ	X	Χ	X	

NOTE: MND = module not declared; X = module included.

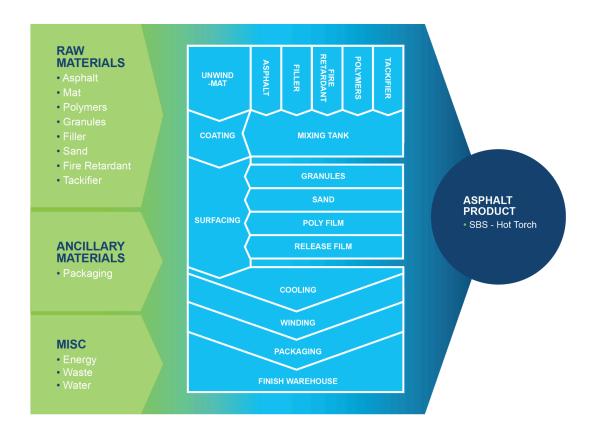
CUT-OFF

Items excluded from system boundary include:

- production, manufacture and construction of manufacturing capital goods and infrastructure;
- · production and manufacture of production equipment, delivery vehicles, and laboratory equipment;
- personnel-related activities (travel, furniture, and office supplies); and
- energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

ALLOCATION PROCEDURE

Allocation follows the requirements and guidance of ISO 14044:2006, Clause 4.3.4; and ISO 21930:2017 section 7.2. Recycling and recycled content is modeled using the cut-off rule.


MANUFACTURING

A1-A3, Production Stage

APP Modified Bitumen Roof Membrane Manufacturing

The main material input into the manufacturing process is asphalt, polymer, filler, sand, granules and fiberglass mat. Asphalt and sand are delivered by truck and pumped into storage tanks. Raw materials are blended together in a mixing tank. Fiberglass mat rolls are placed on a let-off stand at the front end of the coater process. The fiberglass mat sheets are fed through several loops into the coater section. During this process, the asphalt is pumped from the mixing tank and is applied to the fiberglass mat.

Once the fiberglass is coated with asphalt, granules and sand are applied. The coated fiberglass mat sheet is cooled by a water spray. The final product goes into a winder where it is cut into approximately 100-pound rolls, placed on a pallet, wrapped with plastic stretch wrap.

A4, TRANSPORTATION

An average truck and transport distance from the plant to the construction site is assumed.

A5, INSTALLATION

The installation scenario includes the energy and ancillary materials typically consumed to install SBS modified bitumen membrane using a hot torch on a standard-shaped roof of 20,000 square feet, with a total membrane weight of 23,061 pounds.

B1 - B5 USE STAGE

As defined in the PCR, the Building Estimated Service Life (ESL) is 75 years. Use stage information modules have been omitted from this LCA Study.

C1 - C4 END-OF-LIFE STAGE

At the end of building service life and during roof replacement, the SBS modified bitumen roofing membranes may be reused, recovered and repurposed, or disposed of. This study does not take reuse and recovery into account, and it is assumed that insulation is removed when the building is decommissioned and disposed of in a landfill, for which an average distance and specific end of life LCI is applied.

LIFE CYCLE ASSESSMENT RESULTS

TABLE 4: Asphalt SBS Modified Bitumen Roofing Membrane, Hot Torch Products, per 1 m², of average thickness.

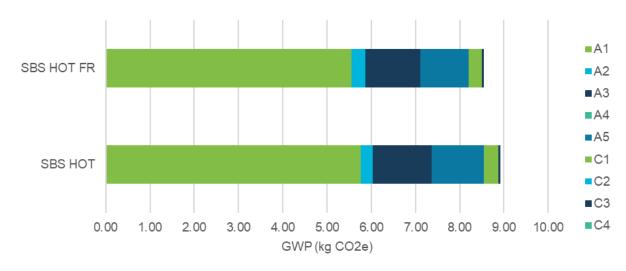
IMPACT ASSESSMENT UNIT	PRODUCTION (A1-A3)	TRANSPORT (A4)	INSTALLATION (A5)	EOL (C1)	EOL (C2)	EOL (C3)	EOL (C4)	TOTAL
Global warming potential (GWP)¹ (kg CO₂ eq)								
SBS Hot Torch	7.36	1.18	0.33	0.00	0.05	0.00	0.29	9.20
Depletion potential of the stratospheric ozone layer (ODP) (kg CFC-11 e	q)						
SBS Hot Torch	5.54E-07	4.91E-11	-7.14E-10	0.00	2.16E-12	0.00	5.94E-08	6.13E-07
Eutrophication potential (EP) (kg N eq)								
SBS Hot Torch	0.01	9.33E-04	-5.72E-06	0.00	3.43E-05	0.00	0.01	0.03
Acidification potential of soil and water sources (AP) (kg	SO2 eq)							
SBS Hot Torch	0.03	0.02	2.16E-04	0.00	5.75E-04	0.00	1.38E-03	0.04
Formation potential of tropospheric ozone (POCP) (kg O	₃ eq)							
SBS Hot Torch	0.36	0.40	0.01	0.00	0.01	0.00	0.04	0.82
Resource Use								
Abiotic depletion potential for non-fossil mineral resourc	es (ADPelemen	its)*						
SBS Hot Torch	6.56E-06	0.00	-1.85E-08	0.00	0.00	0.00	2.25E-07	6.77E-06
Abiotic depletion potential for fossil resources (ADPfossi	I) (MJ, NCV)							
SBS Hot Torch	138.00	16.65	-0.07	0.00	0.73	0.00	4.26	160.00
Renewable primary energy resources as energy (fuel), (R	PRE²)* (MJ, NC	CV)						
SBS Hot Torch	3.84	0.00	-2.30E-03	0.00	0.00	0.00	0.05	3.89
Renewable primary resources as material, (RPRM2)* (MJ	, NCV)							
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-renewable primary resources as energy (fuel), (NRPI	RE2)* (MJ, NCV)						
SBS Hot Torch	146.00	16.65	-0.08	0.00	0.73	0.00	4.45	168.00
Non-renewable primary resources as material, (NRPRM2)	* (MJ, NCV)							
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Consumption of fresh water, (FW2) (m3)								
SBS Hot Torch	0.07	0.00E+00	-2.46E-05	0.00E+00	0.00E+00	0.00E+00	0.01	0.08
Secondary Material, Fuel and Recovered Energy								
Secondary Materials, (SM2) * (kg)	ı							
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Renewable secondary fuels, (RSF2)* (MJ, NCV)								
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-renewable secondary fuels (NRSF2)* (MJ, NCV)								
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Recovered energy, (RE2) *(MJ, NCV)								
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows								
Waste & Output Flows Hazardous waste disposed, (HW2) * (kg)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows Hazardous waste disposed, (HW2) * (kg) SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows Hazardous waste disposed, (HW2) * (kg) SBS Hot Torch Non-hazardous waste disposed, (NHWD2) * (kg)	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.50
Waste & Output Flows Hazardous waste disposed, (HW2) * (kg) SBS Hot Torch Non-hazardous waste disposed, (NHWD2) * (kg) SBS Hot Torch								

¹ GWP 100; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5). CO2 from biogenic secondary fuels used in kiln are climate-neutral (CO2 sink = CO2 emissions), ISO 21930, 7.2.7. ² Calculated per ACLCA ISO 21930 Guidance.

SBS Hot Torch	1.78E-08	0.00	-1.27E-10	0.00	0.00	0.00	4.27E-10	1.81E-08		
Components for reuse, (CRU2) * (kg)										
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Materials for recycling, (MR2) * (kg)										
SBS Hot Torch	2.25E-01	0.00	0.00	0.00	0.00	0.00	0.00	2.25E-01		
Materials for energy recovery, (MER2) * (kg)										
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Recovered energy exported from the product system, (EE	Recovered energy exported from the product system, (EE2) * (MJ, NCV)									
SBS Hot Torch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

TABLE 4: **Asphalt SBS Modified Bitumen Roofing Membrane with Fire Retardant,** Hot Torch FR Products, per 1 m^2 , of average thickness.

IMPACT ASSESSMENT UNIT	PRODUCTION (A1-A3)	TRANSPORT (A4)	INSTALLATION (A5)	EOL (C1)	EOL (C2)	EOL (C3)	EOL (C4)	TOTAL
Global warming potential (GWP)³ (kg CO₂ eq)								
SBS Hot Torch FR	7.11	1.09	0.30	0.00	0.05	0.00	0.27	8.83
Depletion potential of the stratospheric ozone layer (ODP) (kg CFC-11 e	q)						
SBS Hot Torch FR	5.34E-07	4.56E-11	-6.62E-10	0.00	2.01E-12	0.00	5.65E-08	5.90E-07
Eutrophication potential (EP) (kg N eq)								
SBS Hot Torch FR	0.01	8.66E-04	-5.30E-06	0.00	3.18E-05	0.00	0.01	0.02
Acidification potential of soil and water sources (AP) (kg	SO2 eq)							
SBS Hot Torch FR	0.03	0.01	2.01E-04	0.00	5.33E-04	0.00	1.31E-03	0.04
Formation potential of tropospheric ozone (POCP) (kg O	eq)							
SBS Hot Torch FR	0.40	0.37	0.01	0.00	0.01	0.00	0.03	0.82
Resource Use								
Abiotic depletion potential for non-fossil mineral resource	es (ADPelemen	ts)*						
SBS Hot Torch FR	6.21E-06	0.00	-1.71E-08	0.00	0.00	0.00	2.14E-07	6.41E-06
Abiotic depletion potential for fossil resources (ADPfossi	I) (MJ, NCV)							
SBS Hot Torch FR	131.83	15.45	-0.07	0.00	0.68	0.00	4.06	151.95
Renewable primary energy resources as energy (fuel), (R	PRE⁴)* (MJ, NC	V)						
SBS Hot Torch FR	3.61	0.00	-2.13E-03	0.00	0.00	0.00	0.05	3.66
Renewable primary resources as material, (RPRM2)* (MJ	, NCV)							
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-renewable primary resources as energy (fuel), (NRPF	RE2)* (MJ, NCV)							
SBS Hot Torch FR	138.93	15.45	-0.07	0.00	0.68	0.00	4.23	159.22
Non-renewable primary resources as material, (NRPRM2)	* (MJ, NCV)							
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Consumption of fresh water, (FW2) (m3)								
SBS Hot Torch FR	0.07	0.00	-2.28E-05	0.00	0.00	0.00	4.88E-03	0.07
Secondary Material, Fuel and Recovered Energy								
Secondary Materials, (SM2) * (kg)								
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Renewable secondary fuels, (RSF2)* (MJ, NCV)								
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-renewable secondary fuels (NRSF2)* (MJ, NCV)								
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Recovered energy, (RE2) *(MJ, NCV)								


³ GWP 100; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5). CO2 from biogenic secondary fuels used in kiln are climate-neutral (CO2 sink = CO2 emissions), ISO 21930, 7.2.7.
⁴ Calculated per ACLCA ISO 21930 Guidance.

SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows								
Hazardous waste disposed, (HW2) * (kg)								
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-hazardous waste disposed, (NHWD2) * (kg)								
SBS Hot Torch FR	4.67E-01	0.00	0.00	0.00	0.00	0.00	0.00	4.67E-01
High-level radioactive waste, (HLRW2) * (kg)								
SBS Hot Torch FR	3.14E-09	0.00	-1.45E-12	0.00	0.00	0.00	8.46E-11	3.22E-09
Intermediate and low-level radioactive waste, (ILLRW2)* (I	(g)							
SBS Hot Torch FR	1.99E-08	0.00	-1.17E-10	0.00	0.00	0.00	4.06E-10	2.02E-08
Components for reuse, (CRU2) * (kg)								
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Materials for recycling, (MR2) * (kg)								
SBS Hot Torch FR	2.09E-01	0.00	0.00	0.00	0.00	0.00	0.00	2.09E-01
Materials for energy recovery, (MER2) * (kg)								
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Recovered energy exported from the product system, (EE	2) * (MJ, NCV)							
SBS Hot Torch FR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

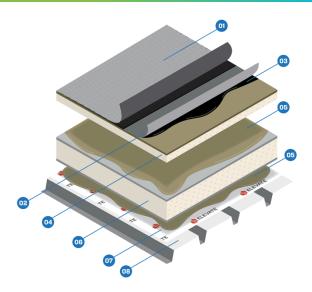
INTERPRETATION

The GWP impacts for each information module are shown below in Figure 3.

FIGURE 3
Comparison of APP Cold and APP Cold with Fire Retardant GWP impacts across information modules

As evidenced by Figure 3, module A1 dominates the GWP impacts for SBS Hot and SBS Hot FR Asphalt membranes, followed by A3 and A4. Together, they account for over 90% of the impacts from all other modules. Module A1 accounts for 63% of the total GWP impact of the product due to the upstream production of the materials used in the production of the Asphalt membranes, in both presentations, with and without FR.

While GWP is specifically assessed in Figure 3, several other impact categories are distributed in a similar fashion.


LIMITATIONS

Life cycle impact assessment (LCIA) results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks.

Emerging LCA impact categories and inventory items are still under development and can have high levels of uncertainty that preclude international acceptance pending further development. Use caution when interpreting data from the following categories:

- renewable primary energy resources as energy (fuel), (RPRE)
- renewable primary resources as material, (RPRM)
- nonrenewable primary resources as energy (fuel), (NRPRE)
- nonrenewable primary resources as material (NRPRM)
- secondary materials (SM)
- renewable secondary fuels (RSF)
- nonrenewable secondary fuels (NRSF)
- recovered energy (RE)
- abiotic depletion potential for non-fossil mineral resources (ADPelements)
- hazardous waste disposed
- nonhazardous waste disposed
- high-level radioactive waste
- intermediate and low-level radioactive waste
- components for reuse
- materials for recycling
- materials for energy recovery; and
- recovered energy exported from the product system.

ADDITIONAL ENVIRONMENTAL INFORMATION

SBS Modified Bitumen Roof System

- 1. Elevate SBS Modified Bitumen Roofing Membrane
- 2. Elevate Base Sheet
- 3. Elevate Cold Adhesive
- 4. ISOGARD HD Cover Board
- 5. Elevate Insulation Adhesive
- 6. ISOGARD GL or ISOGARD CG Insulation Adhered
 - All Elevate polyisocyanurate insulations use EPA accepted blowing agents. Elevate ISOGARD HD Cover Board with ISOGARD foam technology and ISOGARD GL and ISOGARD CG insulation incorporates a HCFC-free blowing agent that does not contribute to the depletion of the ozone layer (ODP-free).
 - The thermal performance of ISOGARD polyiso insulation is up to 40% better than major competitors when tested by an independent third party in cold temperature 40°F (4°C) applications according to ASTM C1289 standards. The increased R-value per inch means better thermal performance from the same roofing systems using the same amount of insulation compared to leading competitive products on the market today
- 7. Elevate V-Force Vapor Barrier
- 8. Steel Deck

REFERENCES

ACLCA. (2019). ACLCA Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017.

ASTM International. (April 2020). General Program Instructions.

ASTM International & NSF International (2019). Product Category Rules for Single PlyRoofing Membranes. V.2

ecoinvent. (2021). The ecoinvent Database v.3.8. Zurich, Switzerland: The Swiss Centre for Life Cycle Inventories.

ISO 14020. (2000). Environmental labels and declarations – General principles.

ISO 14025. (2006). Environmental labels and declarations, Type III environmental declarations, Principles and procedures.

ISO 14040. (2006). ISO 14040: Environmental Management – Life Cycle Assessment – Principles and Framework.

ISO 14044. (2006/Amd 1:2017/Amd 2:2020). Environmental management – Life cycle assessment – Requirements and guidelines

ISO 21930. (2017). ISO 21930; Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

Long Trail Sustainability. (2021). DATASMART (ES-EI Database). Huntington, VT: Long Trail Sustainability.

National Renewable Energy Laboratory. (2015). U.S. Life-Cycle Inventory (LCI) database.

PRé Sustainability. (2020). SimaPro Vers. 9.1.0.8. www.pre-sustainability.com/simapro.

UL, E. (2022). Product Category Rules for Buildings and related products and services. Part A: Life Cycle Assessment Calculation Rules. Standard 10010. Version 4.0.

UL, E. (2024). Product Category Rules for Asphalt Shingles, Build-Up Asphalt Membrane, and Modified Bituminous Asphalt Membrane Roofingfor Buildings and related products and services. Part B: Life Cycle Assessment Calculation Rules. Standard 10010. Version 4.0. (UL 100010-11, 2024)

US EPA. (2014). Tool for the Reduction of Assessment of Chemical and Other Environmental Impacts (TRACI).

US EPA. (2022). Emissions & Generation Resource Integrated Database (eGRID).

26 Century Boulevard, Suite 205

Nashville, TN 37214

1.800.428.4442

HolcimBE com

